
552 IEEE TRANSACTIONS ON M3CROW’AVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 5, WY 1984

T, = 20”c
t=410s
w no reflector
bL=k12
CL =).14 .70

d L = ?./10
d .60

c

t
10

x,mr ~o
6.0 0

Fig. 12. Temperature profile in a homogeneous slab in the absence (curve u)
and in the presence of a reflector (curves b, c, d ). Boundary conditions:
T,= 20.00 C. Irradiation time: 410 s.

puted at t= 410 s after the beginning of the heating process. It is
evident that a preferential heating by the microwaves of a certain
region in the material may be achieved by adequately selecting
the distance between the reflector and the slab boundary.
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On Temperature Characteristics for a GaAs

MonolitMc Broad-Band Amplifier Having

Resistive Loads
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,4Mmct —Temperature characteristics for a GaAs monolithic broad-

band amplifier having resistive loads were investigated. It was demon-

strated tfmt gain versus temperature characteristics for the ampfifier are

self-compensated and that the bandwidth for the amplifier becomes narrow

when ambient temperature increases.
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Fig. L Chip photograph for GSAS monolithic broad-band amplifier.
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Fig. 2. Eqnivafent circuit for the ampfifier.

I. INTRODUCTION

To realize low-noise, broad-band amplification, GRAS mono-

lithic amplifiers having resistive loads, which are formed by GRAS

active layers, have been developed [1]–[6]. To apply the ampli-

fiers to real systems, such as mobile radio systems, temperature

characteristics for the amplifier are very important.
This paper reports the results of an investigation on tempera-

ture characteristics for the amplifier having resistive loads. It is
demonstrated that gain versus temperature characteristics for the
amplifier are self-compensated and that the bandwidth for the
amplifier becomes narrow when ambient temperature increases.

II. THEORETICALPREDICTTON

Figs. 1 and 2 show a chip photograph for the GRAS monolithic
broad-band amplifier [2] and its equivalent circuit. The amplifier
was fabricated on a Cr-doped semi-insulating LEC GRAS sub-
strate. To fabricate FET’s and resistors uniformly, art ion implart-
tation technique was used. FET active (n) layers were formed by
30Si + ion implantation to the substrate in selected areas with

energy E = 70 keV and dose D = 3 X 1012 cm-2. Resistive (n+)
layers were formed by a double ion implantation. Conditions for
the ion implantation are E =130 keV, D = 3 X 1013 cm-2 and
E =60 keV, D =1.5X 1013 cm-2. Dopant for the n+ layers is
30Si +. After the ion implantations, the substrate was coated with

a CVD-Si02 film and annealed at 800°C (20 tin) in an H2
ambient.

To estimate the gain versus temperature characteristic for the
amplifier, voltage gain A v ( T) for the first-stage-FET circuit in
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Fig. 4. Gain versus frequency characteristics measured at – 65, + 25, and at
+ 100”C.

Fig. 2 is approximately calculated as

RL1(T)/RF(T)– gml(~)~Ll(~)
A(T) =

RL1(T)/RF(T)+l
(1)

where the drain conductance for the FET was neglected for
simplification. In (l), since both transconductance g~ (T) and
resistance R ~( T) are functions of temperature T, voltage gain

Au (77 becomes a function of temperature.
l-lsing sheet resistivity Rn(7’) for the ion implanted n+ layer,

RLI(T) and RF(T) are represented as follows:

RF(T) =~Rn(T) (2)

where L~l, LF and W~l, WF are lengths and widths for the
resistors, respectively. From (2), the following relation is derived:

R~l (T)/RF (T) = L~lWF/LFW~l = const. (3)

Since both electron mobility and electron saturation drift velocity

decrease when temperature increases, it is considered that the

temperature coefficient for gml(T) is negative, and that for
R~l(T) is positive. If gml(T) X R~l(T) doesn’t depend strongly
on temperature, voltage gain becomes nearly constant, regarding
temperature.

On the other hand, high cutoff frequency ~c for the first-stage
FET circuit is roughly approximated as (3)

fc(T) = 1
271c~GRL1(T)

(4)

where the parallel feedback resistor R ~ was neglected for sim-
plification. C’~ is gate-source capacitance for the second-stage
FET, which is nearly constant in the ambient temperature range.
Assuming the posit ive temperature coefficient for R ~l(T), it is
anticipated that the higher the ambient temperature becomes, the
lower ~,(T) becomes.

III. MEASURED TEMPERATURE CHARACTERISTICS

Fig. 3 shows gain for the amplifier measured, under the ambient
temperature range from – 65 to + 100”C. As seen, gain devia-
tions between – 65 and + 65°C is as small as +0.15 dB. Fig, 4
shows gain versus frequency characteristics measured at – 65,
+25, and at + 100°C. In the figure, l-dB gain reduction points
(x) are indicated. The l-dB gain reduction frequency becomes
low when ambient temperature increases. The l-dB gain reduc-
tion frequencies for – 65, +25, and for + 100”C are 3.7, 3.6, and
3.5 GHz, respectively. As shown in Figs. 3 and 4, experimental
gain and the bandwidth characteristics results are in good agree-
ment with the theoretical prediction.

Measured noise figures are also plotted in Fig. 3. Noise figures,
which are not self-compensated, are within 2.7 ~ 0.75 dB in the

ambient temperature range from – 65 to 100°C.

IV. CONCLUSION

It has been demonstrated that gain versus temperature char-
acteristics for a Ga%s monolithic broad-band amplifier having
resistive loads are self-compensated and that the bandwidth for
the amplifier becomes narrow when temperature increases. Ex-
perimental results are in good agreement with theoretical predic-
tion.
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