

Fig. 12. Temperature profile in a homogeneous slab in the absence (curve *a*) and in the presence of a reflector (curves *b*, *c*, *d*). Boundary conditions: $T_s = 20.0^\circ\text{C}$. Irradiation time: 410 s.

puted at $t = 410$ s after the beginning of the heating process. It is evident that a preferential heating by the microwaves of a certain region in the material may be achieved by adequately selecting the distance between the reflector and the slab boundary.

REFERENCES

- [1] K. R. Foster, H. N. Kritikos, and H. P. Schwan, "Effect of surface cooling and blood flow on the microwave heating of tissue," *IEEE Trans. Biomed. Eng.*, vol. BME-25, p. 313, 1978.
- [2] L. C. Thomas, *Fundamental of Heat Transfer*. Englewood Cliffs, NJ: Prentice-Hall, 1980.
- [3] W. Wulff, "The energy conservation equation for living tissue," *IEEE Trans. Biomed. Eng.*, vol. BME-21, p. 494, 1974.
- [4] C. De Wagter, M. De Pourcq, and W. Van Loock, "Microwave heating of laminated materials," in *Dig. Microwave Power Symp.* (Toronto), 1981, p. 225.
- [5] L. Krul, E. Attema, and C. de Haan, "Modelling of microwave heating processes," in *Dig. Microwave Symp.* (Ottawa), 1978, p. 77.
- [6] R. Zimmer and C. M. Gros, "Numerical calculation of electromagnetic energy and temperature distribution in a microwave irradiated breast carcinoma. Preliminary results," *J. Microwave Power*, vol. 14, p. 155, 1979.
- [7] M. van Sliedregt, "Computer calculations of a one-dimensional model, useful in the application of hyperthermia," *Microwave J.*, vol. 26, p. 113, 1983.
- [8] G. Turgeon, "Etude de la distribution de la puissance dans un corps stratifié en présence d'une onde électromagnétique stationnaire", Final Projet Rep., Ecole Polytechnique de Montréal, 1981.
- [9] G. Turgeon and M. Nachman, "Puissance dissipée par des microondes se propageant dans un milieu stratifié," in *Annales des Communications ACFAS 1981*, 49e Congrès, vol. 48, 1981, p. 95.
- [10] B. Carnahan, H. A. Luther, and J. O. Wilkes, *Applied Numerical Methods*. New York: Wiley, 1969, pp. 443-464.
- [11] H. N. Kritikos and H. P. Schwan, "Potential temperature rise induced by electromagnetic field in brain tissues," *IEEE Trans. Biomed. Eng.*, vol. BME-26, p. 29, 1979.

On Temperature Characteristics for a GaAs Monolithic Broad-Band Amplifier Having Resistive Loads

KAZUHIKO HONJO, MEMBER, IEEE

Abstract—Temperature characteristics for a GaAs monolithic broad-band amplifier having resistive loads were investigated. It was demonstrated that gain versus temperature characteristics for the amplifier are self-compensated and that the bandwidth for the amplifier becomes narrow when ambient temperature increases.

Manuscript received August 24, 1983; revised January 16, 1984.

The author is with Microelectronics Research Laboratories, NEC Corporation, 1-1, Miyazaki, 4-chome, Miyamae-ku, Kawasaki, Kanagawa, 213, Japan.

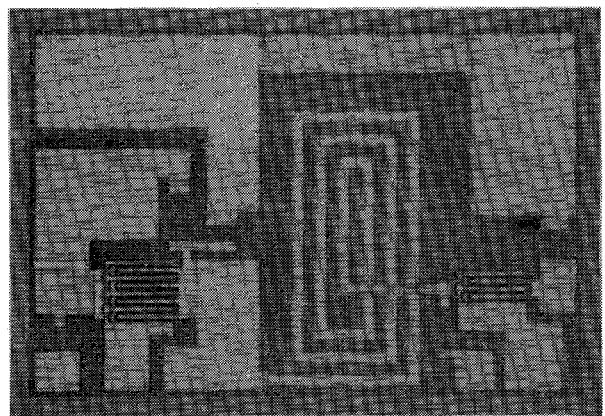
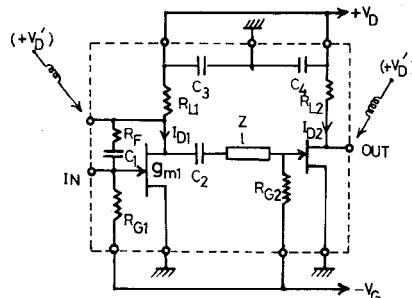



Fig. 1. Chip photograph for GaAs monolithic broad-band amplifier.

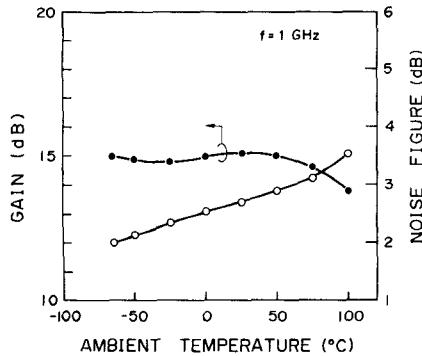


Fig. 3. Gain versus ambient temperature characteristics (noise figures are also plotted).

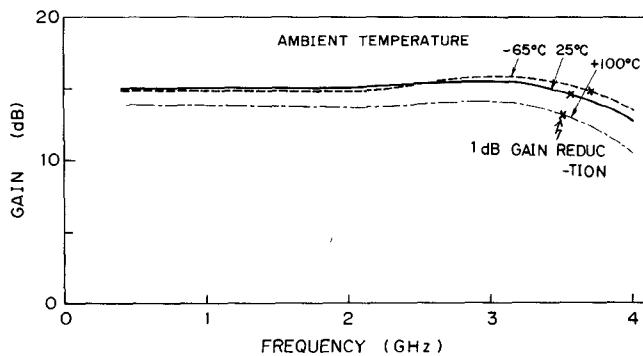


Fig. 4. Gain versus frequency characteristics measured at -65°C , $+25^{\circ}\text{C}$, and at $+100^{\circ}\text{C}$.

Fig. 2 is approximately calculated as

$$Av(T) \approx \frac{R_{L1}(T)/R_F(T) - g_{m1}(T)R_{L1}(T)}{R_{L1}(T)/R_F(T) + 1} \quad (1)$$

where the drain conductance for the FET was neglected for simplification. In (1), since both transconductance $g_m(T)$ and resistance $R_L(T)$ are functions of temperature T , voltage gain $Av(T)$ becomes a function of temperature.

Using sheet resistivity $R_{\square}(T)$ for the ion implanted n^+ layer, $R_{L1}(T)$ and $R_F(T)$ are represented as follows:

$$R_{L1}(T) = \frac{L_{L1}}{W_{L1}} R_{\square}(T) \quad (2)$$

$$R_F(T) = \frac{L_F}{W_F} R_{\square}(T) \quad (2)$$

where L_{L1} , L_F and W_{L1}, W_F are lengths and widths for the resistors, respectively. From (2), the following relation is derived:

$$R_{L1}(T)/R_F(T) = L_{L1}W_F/L_FW_{L1} = \text{const.} \quad (3)$$

Since both electron mobility and electron saturation drift velocity decrease when temperature increases, it is considered that the temperature coefficient for $g_{m1}(T)$ is negative, and that for $R_{L1}(T)$ is positive. If $g_{m1}(T) \times R_{L1}(T)$ doesn't depend strongly on temperature, voltage gain becomes nearly constant, regarding temperature.

On the other hand, high cutoff frequency f_c for the first-stage FET circuit is roughly approximated as (3)

$$f_c(T) \approx \frac{1}{2\pi C_{SG} R_{L1}(T)} \quad (4)$$

where the parallel feedback resistor R_F was neglected for simplification. C_{SG} is gate-source capacitance for the second-stage FET, which is nearly constant in the ambient temperature range. Assuming the positive temperature coefficient for $R_{L1}(T)$, it is anticipated that the higher the ambient temperature becomes, the lower $f_c(T)$ becomes.

III. MEASURED TEMPERATURE CHARACTERISTICS

Fig. 3 shows gain for the amplifier measured under the ambient temperature range from -65 to $+100^{\circ}\text{C}$. As seen, gain deviations between -65 and $+65^{\circ}\text{C}$ is as small as ± 0.15 dB. Fig. 4 shows gain versus frequency characteristics measured at -65 , $+25$, and at $+100^{\circ}\text{C}$. In the figure, 1-dB gain reduction points (\times) are indicated. The 1-dB gain reduction frequency becomes low when ambient temperature increases. The 1-dB gain reduction frequencies for -65 , $+25$, and for $+100^{\circ}\text{C}$ are 3.7 , 3.6 , and 3.5 GHz, respectively. As shown in Figs. 3 and 4, experimental gain and the bandwidth characteristics results are in good agreement with the theoretical prediction.

Measured noise figures are also plotted in Fig. 3. Noise figures, which are not self-compensated, are within 2.7 ± 0.75 dB in the ambient temperature range from -65 to 100°C .

IV. CONCLUSION

It has been demonstrated that gain versus temperature characteristics for a GaAs monolithic broad-band amplifier having resistive loads are self-compensated and that the bandwidth for the amplifier becomes narrow when temperature increases. Experimental results are in good agreement with theoretical prediction.

ACKNOWLEDGMENT

The author would like to thank T. Tsuji, T. Ozawa, and M. Ohyagi for developing the ion implantation process. He would also like to thank T. Sugiura, Y. Takayama, and H. Muta for their constant encouragement throughout this work.

REFERENCES

- [1] K. B. Niclas, "On the design and performance of lossy match GaAs MESFET amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. 30, pp. 1900-1907, Nov. 1982.
- [2] K. Honjo, T. Sugiura, T. Tsuji, and T. Ozawa, "Low-noise, low-power dissipation GaAs monolithic broad-band amplifiers," *IEEE Trans. Microwave Theory Tech.*, vol. 31, pp. 412-417, May 1983.
- [3] K. Honjo, T. Sugiura, and H. Itoh, "Ultra-broad-band GaAs monolithic amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. 30, pp. 1027-1033, July 1982.
- [4] K. Honjo and T. Sugiura, "Microwave broadband GaAs monolithic amplifier," *Trans. IECE Japan*, vol. E66, pp. 298-304, May 1983.
- [5] S. Hori, K. Kamei, M. Tatematsu, T. Chigira, H. Ishimura, and S. Okano, "Direct-coupled GaAs monolithic IC amplifiers," in *IEEE Microwave and Millimeter-wave Monolithic Circuit Symp. Dig.*, June 1982, pp. 16-19.
- [6] W. C. Petersen, A. K. Gupta, and D. R. Decker, "A monolithic GaAs DC to 2 GHz feedback amplifier," in *IEEE Microwave and Millimeter-wave Monolithic Circuit Symp. Dig.*, June 1982, pp. 20-22.